

 Navigation

 	
 index

 	ScaleIO-Framework stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/scaleio-framework/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/scaleio-framework/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	ScaleIO-Framework stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		ScaleIO-Framework stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/sio03.png
oy VMIARATMUN P 20D DEPLOYITICTILS S€arcn att apptications | A

Applications > scaleio-scheduler

scaleio-scheduler

@ Running (1 of 1 instances)

® OHealthy @ 0Unhealthy 1 Unknown (100%)
Instances Configuration Debug
U Refresh
@ D Status Error Log Output Log Version a Updated
e scaleio-scheduler.3a0b52d2-7f5f-11e6-b8f0-029932b7ebe8 Started] stderr (c] stdout 2 minutes ago 9/20/2016, 2:22:54 PM

10.0.0.22:31713

README.html

 Navigation

 		
 index

 		ScaleIO-Framework stable documentation »

ScaleIO Framework for Apache Mesos

[image: logo]

The ScaleIO Framework deploys Dell EMC ScaleIO as a simplified task in Apache Mesos. All the required components to consume and provision storage volumes from a ScaleIO cluster are automatically deployed and configured on the Mesos Agents. This creates an automated mechanism to have a fully configured and reliable persistent storage solution for containers running on Apache Mesos.

Test it out following the Demo Guide using an AWS Cloud Formation Template and provided JSON files. Watch the YouTube Demo Video [https://youtu.be/tt6qhEkeVOQ?list=PLbssOJyyvHuWiBQAg9EFWH570timj2fxt] to see it in action.

Key Features

		Installs required components on existing Mesos Agents to consume and provision ScaleIO storage volumes

		On-boards new Agent nodes with “native” access to ScaleIO volumes

		All Agent nodes are configured to be highly available so failed applications can be restarted on other Agent nodes while preserving their data using REX-Ray [https://github.com/emccode/rexray] as a container runtime volume driver

		Additional storage can be added to the ScaleIO cluster to expand capacity

Requirements

		Ubuntu 14.04 or CentOS7/RHEL7

		Since Ubuntu support for ScaleIO is limited, this framework currently only supports ScaleIO version 2.0.1-2072.

		An existing 3-node or greater ScaleIO cluster using version 2.0.1-2072 must be running/provided. Primary, Secondary, and TieBreaker MDM are required for a minimal 3-node cluster.

		The ScaleIO cluster must have a Protection Domain and Storage Pool present which is capable of provisioning volumes.

		This Framework is implemented using HTTP APIs provided by Apache Mesos. This requires an Apache Mesos cluster running version 1.0 or higher.

IMPORTANT NOTE for Ubuntu 14.04: In order to avoid the Mesos Agent nodes from rebooting, it is highly recommended that the Agent Nodes have kernel version 4.2.0-30 installed prior to launching the scheduler. You can do this by running the following command prior to bringing up the Mesos Agent service:

apt-get -y update && apt-get -y install linux-image-4.4.0-38-generic

Launch the Framework on an Existing ScaleIO Cluster

No existing cluster? Follow the Demo Guide using an AWS Cloud Formation Template and provided JSON files to get started.

If MesosDNS [https://github.com/mesosphere/mesos-dns] or another service discovery application is not running in the Mesos cluster, create the following JSON to curl to Marathon:

{
 "id": "scaleio-scheduler",
 "uris": [
 "https://github.com/codedellemc/scaleio-framework/releases/download/v0.2.0/scaleio-scheduler",
 "https://github.com/codedellemc/scaleio-framework/releases/download/v0.2.0/scaleio-executor"
],
 "cmd": "chmod u+x scaleio-scheduler && ./scaleio-scheduler -loglevel=debug -rest.port=$PORT -uri=[IP ADDRESS FOR MESOS MASTER]:5050 -scaleio.clustername=[SCALEIO NAME] -scaleio.password=[SCALEIO GATEWAY PASSWORD] -scaleio.protectiondomain=[PROTECTION DOMAIN NAME] -scaleio.storagepool=[STORAGE POOL NAME] -scaleio.preconfig.primary=[MASTER MDM IP ADDRESS] -scaleio.preconfig.secondary=[SLAVE MDM IP ADDRESS] -scaleio.preconfig.tiebreaker=[TIEBREAKER MDM IP ADDRESS] -scaleio.preconfig.gateway=[GATEWAY IP ADDRESS]",
 "mem": 32,
 "cpus": 0.2,
 "instances": 1,
 "constraints": [
 ["hostname", "UNIQUE"]
]
}

cURL to Marathon:

curl -k -XPOST -d @[SCALEIO JSON FILE] -H "Content-Type: application/json" [MARATHON IP ADDRESS]:8080/v2/apps

Example:

curl -k -XPOST -d @scaleio.json -H "Content-Type: application/json" 127.0.0.1:8080/v2/apps

Under the Covers

What does the ScaleIO Framework really do under the covers? Up to this point, its been stated that the Framework automates the lifecycle of ScaleIO and any related components required to provision external persistent storage in a “run it and forget it” fashion, but what does that really mean?

The ScaleIO Framework performs the following steps on deployment. It installs and configures:

		Any dependencies required for ScaleIO to run. This is done via apt-get or yum.

		The ScaleIO SDS (or Server) package. This is the service that takes designated disks (physical or virtual) and contributes them to the ScaleIO cluster.

		The ScaleIO SDC (or Client) package. This is the service that provides access to ScaleIO volumes created within the ScaleIO cluster.

		REX-Ray [https://github.com/codedellemc/rexray] which provides Mesos the ability to provision external storage for tasks that are backed by Docker containers.

		mesos-module-dvdi [https://github.com/emccode/mesos-module-dvdi] and DVDCLI [https://github.com/emccode/dvdcli] which provides Mesos the ability to provision external storage for tasks that using the Mesos Universal Containerizer. This includes any configuration required on the Mesos Agent nodes.

Road map / TBDs

The current release highlights the capabilities of combining Software Defined Storage with a platform that offers 2-layer scheduling. Subsequent versions will add significantly more features.

		Add CoreOS support

		Add ability to provision an entire ScaleIO cluster and include the MDM management nodes from initialization

		Allow more customization of the ScaleIO deployment

		Manage entire life cycle (upgrades, maintenance, etc) of all nodes in the ScaleIO cluster

		Manages health of a ScaleIO cluster by monitoring for critical events (Performance, Almost Full, etc)

Support

Please file bugs and issues on the Github issues page for this project. This is to help keep track and document everything related to this repo. For general discussions and further support, join the {code} by Dell EMC Community [http://community.codedellemc.com/] slack team. The code and documentation are released with no warranties or SLAs and are intended to be supported through a community driven process.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

_static/file.png

_static/plus.png

demo/README.html

 Navigation

 		
 index

 		ScaleIO-Framework stable documentation »

Demo/Test the ScaleIO Framework for Apache Mesos

The requirements of having a 3-Node ScaleIO cluster along with an Apache Mesos Master and Agent cluster would heavily resource constrain a laptop or computer used for local development. An AWS CloudFormation template is provided that deploys and installs a fully configured Dell EMC ScaleIO and Apache Mesos cluster on Amazon AWS. This template currently works in the US-West-1 (aka N.California) region only.

NOTE: Deploying this template uses six (6) t2.medium instances in the N.California region, costing $0.068/hour. The AWS EC2 compute usage for this cluster will cost approximately $9.78/day. The template provisions nine (9) EBS volumes in total. Six (6) for the operating systems and three (3) 100-gigabyte volumes for ScaleIO storage.

Steps:

		Deploy The CloudFormation Template

		Verify ScaleIO Configuration

		Launch Framework

		Deploy Applications

Watch the YouTube Demo Video [https://youtu.be/tt6qhEkeVOQ?list=PLbssOJyyvHuWiBQAg9EFWH570timj2fxt] to see it in action.

Deploy CloudFormation Template

The password for administrator rights is F00barbaz. The ScaleIO nodes are deployed using Redhat 7.X instances and the Mesos nodes are Ubuntu 14.04 instances. The usernames used to log into those systems via ssh are ec2-user and ubuntu, respectively.

Within the AWS Web GUI:

		Verify you are in the N. California region.

		Within the drop-down of Services choose CloudFormation

		Click Create Stack, then Choose a Template

		Click Upload file to S3, and upload Framework_Testing_Cluster_Ubuntu.json

		Give the stack a unique name (such as: MesosFrameworkDemo)

		Select a keypair that exists in the N.California region

		Click next. Tags are optional. Click next

		Review the settings and click Create to create the stack

The stack will take approximately two minutes to build and the nodes will be available for ssh login.

Verify ScaleIO Configuration

It is important to determine the Master, Slave and TieBreaker MDM (Metadata Manager) nodes, as this information is needed to launch the framework. Through multiple testing scenarios, ScaleIONode2 (with the Private IP address of 10.0.0.12) is typically the Primary MDM node. SSH into that instance using the Public DNS or IP

ssh -i "keypair.pem" ec2-user@ScaleIONode2-IP-or-DNS

Run the following commands:

		Log into the ScaleIO shell:

scli –login –username admin –password F00barbaz
```



		Verify the MDM nodes:















scli –query_cluster
```


Sample output will look like this:

Cluster:
 Mode: 3_node, State: Normal, Active: 3/3, Replicas: 2/2
Master MDM:
 Name: Manager2, ID: 0x1ed68652078a0ab1
 IPs: 10.0.0.12, Management IPs: 10.0.0.12, Port: 9011
 Version: 2.0.5014
Slave MDMs:
 Name: Manager1, ID: 0x44691e69695396d0
 IPs: 10.0.0.11, Management IPs: 10.0.0.11, Port: 9011
 Status: Normal, Version: 2.0.5014
Tie-Breakers:
 Name: Tie-Breaker1, ID: 0x569bc3812558b2d2
 IPs: 10.0.0.13, Port: 9011
 Status: Normal, Version: 2.0.5014

Launch Framework

Before launching, open the Marathon UI at:

http://[MESOS MASTER PUBLIC DNS/IP ADDRESS]:8080

Utilize scaleio.json to correctly match and/or update the internal IP addresses of the Master, Slave, and TieBreaker MDM nodes. Typically, but not always, the defaults are the correct values:

{
 "id": "scaleio-scheduler",
 "uris": [
 "https://github.com/codedellemc/scaleio-framework/releases/download/v0.2.0/scaleio-scheduler",
 "https://github.com/codedellemc/scaleio-framework/releases/download/v0.2.0/scaleio-executor"
],
 "cmd": "chmod u+x scaleio-scheduler && ./scaleio-scheduler -loglevel=debug -rest.port=$PORT -uri=10.0.0.21:5050 -scaleio.clusterid=39f2e3fe27fbc1dc -scaleio.password=F00barbaz -scaleio.protectiondomain=default -scaleio.storagepool=default -scaleio.preconfig.primary=10.0.0.12 -scaleio.preconfig.secondary=10.0.0.11 -scaleio.preconfig.tiebreaker=10.0.0.13 -scaleio.preconfig.gateway=10.0.0.11",
 "mem": 32,
 "cpus": 0.2,
 "instances": 1,
 "constraints": [
 ["hostname", "UNIQUE"]
]
}

After verifying the values are correct in the JSON file, cURL the JSON to Marathon by running the following command:

curl -k -XPOST -d @scaleio.json -H "Content-Type: application/json" [MESOS MASTER PUBLIC DNS/IP ADDRESS]:8080/v2/apps

View the status of the ScaleIO framework by opening the Deployment UI.

		Within the Marathon UI at http://[MESOS MASTER PUBLIC DNS/IP ADDRESS]:8080, Click the scaleio-scheduler.

		The Private IP Address for the scheduler is listed. Substitute the Private IP with the Agent’s Public IP Address and keep the existing port values.

		A list Mesos Agent nodes with the current status of ScaleIO deployment can be seen and the page will automatically refresh itself.

[image: sio03]
[image: sio02]

The Agent Nodes WILL REBOOT after successful installation. This is done within this demo ONLY to make sure ScaleIO, Docker, REX-Ray and Marathon services are functioning properly. This process can take 2-5 minutes.

The status of ScaleIO deployment web portal will be restarted on the other Mesos Agent with a new port.

Deploy Applications

This particular setup has a 5 minute timeout. If a Docker image takes longer than 5 minutes to download, then deployment will fail. It’s suggested to go to each Mesos Agent and download the image using docker pull if there is a poor connection.

$ ssh -i "keypair.pem" ubuntu@MesosAgent1_IP_or_DNS
$ docker pull <image name>

Deploying Applications:

		Storage Persistence with Postgres using Mesos, Marathon, Docker, and REX-Ray [https://github.com/codedellemc/demo/tree/master/demo-persistence-with-postgres-marathon-docker]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_images/sio02.png
C ® 52.53.180.194:31713

For quick access, place your bookmarks here on t

executor-scaleiol = ScaleIO Running
executor-scaleio2 = ScaleIO Running

_images/logo.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

